Nadler and Kannan Type Set Valued Mappings in M-Metric Spaces and an Application

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On set-valued contractions of Nadler type in tυs-G-cone metric spaces

Correspondence: [email protected]. edu.tw Department of Applied Mathematics, National Hsinchu University of Education, No. 521 Nanda Rd., Hsinchu City 300, Taiwan Abstract In this article, for a tυs-G-cone metric space (X, G) and for the family A of subsets of X, we introduce a new notion of the tυs H cone metric H with respect to G, and we get a fixed result for the stronger Meir-Keeler-G-cone-t...

متن کامل

FIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES

Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.

متن کامل

Stationary Points for Set-valued Mappings on Two Metric Spaces

We give stationary point theorems of set-valued mappings in complete and compact metric spaces. The results in this note generalize a few results due to Fisher. 2000 Mathematics Subject Classification. 54H25.

متن کامل

Approximation of endpoints for multi-valued mappings in metric spaces

In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7040373